Página 19 dos resultados de 18000 itens digitais encontrados em 0.122 segundos

Involvement of an Active Efflux System in the Natural Resistance of Pseudomonas aeruginosa to Aminoglycosides

Aires, Julio Ramos; Köhler, Thilo; Nikaido, Hiroshi; Plésiat, Patrick
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /11/1999 Português
Relevância na Pesquisa
66.730073%
A mutant, named 11B, hypersusceptible to aminoglycosides, tetracycline, and erythromycin was isolated after Tn501 insertion mutagenesis of Pseudomonas aeruginosa PAO1. Cloning and sequencing experiments showed that 11B was deficient in an, at that time, unknown active efflux system that contains homologs of MexAB. This locus also contained a putative regulatory gene, mexZ, transcribed divergently from the efflux operon. Introduction of a recombinant plasmid that carries the genes of the efflux system restored the resistance of 11B to parental levels, whereas overexpression of these genes strongly increased the MICs of substrate antibiotics for the PAO1 host. Antibiotic accumulation studies confirmed that this new system is an energy-dependent active efflux system that pumps out aminoglycosides. Furthermore, this system appeared to function with an outer membrane protein, OprM. While the present paper was being written and reviewed, genes with a sequence identical to our pump genes, mexXY of P. aeruginosa, have been reported to increase resistance to erythromycin, fluoroquinolones, and organic cations in Escherichia coli hosts, although efflux of aminoglycosides was not examined (Mine et al., Antimicrob. Agents Chemother. 43:415–417...

Prevalence of β-Lactamases among 1,072 Clinical Strains of Proteus mirabilis: a 2-Year Survey in a French Hospital

Chanal, C.; Bonnet, R.; De Champs, C.; Sirot, D.; Labia, R.; Sirot, J.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /07/2000 Português
Relevância na Pesquisa
66.74831%
β-Lactam resistance was studied in 1,072 consecutive P. mirabilis clinical strains isolated at the Clermont-Ferrand teaching hospital between April 1996 and March 1998. The frequency of amoxicillin resistance was 48.5%. Among the 520 amoxicillin-resistant isolates, three resistance phenotypes were detected: penicillinase (407 strains [78.3%]), extended-spectrum β-lactamase (74 strains [14.2%]), and inhibitor resistance (39 strains [7.5%]). The penicillinase phenotype isolates were divided into three groups according to the level of resistance to β-lactams, which was shown to be related to the strength of the promoter. The characterization of the different β-lactamases showed that amoxicillin resistance in P. mirabilis was almost always (97%) associated with TEM or TEM-derived β-lactamases, most of which evolved via TEM-2.

Inducible Azole Resistance Associated with a Heterogeneous Phenotype in Candida albicans

Marr, Kieren A.; Lyons, Christopher N.; Ha, Kien; Rustad, Tige R.; White, Theodore C.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /01/2001 Português
Relevância na Pesquisa
66.73107%
The development of azole resistance in Candida albicans is most problematic in patients with AIDS who receive long courses of drug for therapy or prevention of oral candidiasis. Recently, the rapid development of resistance was noted in other immunosuppressed patients who developed disseminated candidiasis despite fluconazole prophylaxis. One of these series of C. albicans isolates became resistant, with an associated increase in mRNA specific for a CDR ATP-binding cassette transporter efflux pump (K. A. Marr, C. N. Lyons, T. R. Rustad, R. A. Bowden, and T. C. White, Antimicrob. Agents Chemother. 42:2584–2589, 1998). Here we study this series of C. albicans isolates further and examine the mechanism of azole resistance in a second series of C. albicans isolates that caused disseminated infection in a recipient of bone marrow transplantation. The susceptible isolates in both series become resistant to fluconazole after serial growth in the presence of drug, while the resistant isolates in both series become susceptible after serial transfer in the absence of drug. Population analysis of the inducible, transiently resistant isolates reveals a heterogeneous population of fluconazole-susceptible and -resistant cells. We conclude that the rapid development of azole resistance occurs by a mechanism that involves selection of a resistant clone from a heterogeneous population of cells.

Role of Penicillin-Binding Protein 5 in Expression of Ampicillin Resistance and Peptidoglycan Structure in Enterococcus faecium

Sifaoui, Farid; Arthur, Michel; Rice, Louis; Gutmann, Laurent
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /09/2001 Português
Relevância na Pesquisa
66.730596%
The contribution of penicillin-binding protein 5 (PBP 5) to intrinsic and acquired β-lactam resistance was investigated by constructing isogenic strains of Enterococcus faecium producing different PBP 5. The pbp5 genes from three E. faecium clinical isolates (BM4107, D344, and H80721) were cloned into the shuttle vector pAT392 and introduced into E. faecium D344S, a spontaneous derivative of E. faecium D344 highly susceptible to ampicillin due to deletion of pbp5 (MIC, 0.03 μg/ml). Immunodetection of PBP5 indicated that cloning of the pbp5 genes into pAT392 resulted in moderate overproduction of PBP 5 in comparison to wild-type strains. This difference may be attributed to a difference in gene copy number. Expression of the pbp5 genes from BM4107 (MIC, 2 μg/ml), D344 (MIC, 24 μg/ml), and H80721 (MIC, 512 μg/ml) in D344S conferred relatively low levels of resistance to ampicillin (MICs, 6, 12, and 20 μg/ml, respectively). A methionine-to-alanine substitution was introduced at position 485 of the BM4107 PBP 5 by site-directed mutagenesis. In contrast to previous hypotheses based on comparison of nonisogenic strains, this substitution resulted in only a 2.5-fold increase in the ampicillin MIC. The reversed-phase high-performance liquid chromatography muropeptide profiles of D344 and D344S were similar...

Plasmid-Mediated Resistance to Expanded-Spectrum Cephalosporins among Enterobacter aerogenes Strains

Pitout, Johann D. D.; Thomson, Kenneth S.; Hanson, Nancy D.; Ehrhardt, Anton F.; Coudron, Philip; Sanders, Christine C.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/1998 Português
Relevância na Pesquisa
66.75271%
Resistance to expanded-spectrum cephalosporins commonly develops in Enterobacter aerogenes during therapy due to selection of mutants producing high levels of the chromosomal Bush group 1 β-lactamase. Recently, resistant strains producing plasmid-mediated extended-spectrum β-lactamases (ESBLs) have been isolated as well. A study was designed to investigate ESBL production among 31 clinical isolates of E. aerogenes from Richmond, Va., with decreased susceptibility to expanded-spectrum cephalosporins and a positive double-disk potentiation test. Antibiotic susceptibility was determined by standard disk diffusion and agar dilution procedures. β-Lactamases were investigated by an isoelectric focusing overlay technique which simultaneously determined isoelectric points (pIs) and substrate or inhibitor profiles. Decreased susceptibility to cefotaxime, ceftazidime, and aztreonam (MIC range, 1 to 64 μg/ml) was detected and associated with resistance to gentamicin and trimethoprim-sulfamethoxazole. All strains produced an inducible Bush group 1 β-lactamase (pI 8.3). Twenty-nine of the 31 isolates also produced an enzyme similar to SHV-4 (pI 7.8), while 1 isolate each produced an enzyme similar to SHV-3 (pI 6.9) and to SHV-5 (pI 8.2). The three different SHV-derived ESBLs were transferred by transconjugation to Escherichia coli C600N and amplified by PCR. Plasmid profiles of the clinical isolates showed a variety of different large plasmids. Because of the linkage of resistance to aminoglycosides and trimethoprim-sulfamethoxazole with ESBL production...

Type II Topoisomerase Quinolone Resistance-Determining Regions of Aeromonas caviae, A. hydrophila, and A. sobria Complexes and Mutations Associated with Quinolone Resistance

Goñi-Urriza, Marisol; Arpin, Corinne; Capdepuy, Michèle; Dubois, Véronique; Caumette, Pierre; Quentin, Claudine
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /02/2002 Português
Relevância na Pesquisa
66.75271%
Most Aeromonas strains isolated from two European rivers were previously found to be resistant to nalidixic acid. In order to elucidate the mechanism of this resistance, 20 strains of Aeromonas caviae (n = 10), A. hydrophila (n = 5), and A. sobria (n = 5) complexes, including 3 reference strains and 17 environmental isolates, were investigated. Fragments of the gyrA, gyrB, parC, and parE genes encompassing the quinolone resistance-determining regions (QRDRs) were amplified by PCR and sequenced. Results obtained for the six sensitive strains showed that the GyrA, GyrB, ParC, and ParE QRDR fragments of Aeromonas spp. were highly conserved (≥96.1% identity), despite some genetic polymorphism; they were most closely related to those of Vibrio spp., Pseudomonas spp., and members of the family Enterobacteriaceae (72.4 to 97.1% homology). All 14 environmental resistant strains carried a point mutation in the GyrA QRDR at codon 83, leading to the substitution Ser-83→Ile (10 strains) or Ser-83→Arg. In addition, seven strains harbored a mutation in the ParC QRDR either at position 80 (five strains), generating a Ser-80→Ile (three strains) or Ser-80→Arg change, or at position 84, yielding a Glu-84→Lys modification. No amino acid alterations were discovered in the GyrB and ParE QRDRs. Double gyrA-parC missense mutations were associated with higher levels of quinolone resistance compared with the levels associated with single gyrA mutations. The most resistant strains probably had an additional mechanism(s) of resistance...

Antimicrobial Susceptibility and Mechanisms of Resistance to Quinolones and β-Lactams in Acinetobacter Genospecies 3

Ribera, A.; Fernández-Cuenca, F.; Beceiro, A.; Bou, G.; Martínez-Martínez, L.; Pascual, A.; Cisneros, J. M.; Rodríguez-Baño, J.; Pachón, J.; Vila, J.;
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /04/2004 Português
Relevância na Pesquisa
66.745176%
Antimicrobial susceptibility was determined in 15 epidemiologically unrelated clinical isolates of Acinetobacter genospecies 3. Moreover, the mechanisms of resistance to some β-lactam antibiotics may be associated with the presence of a chromosomal cephalosporinase, AmpC, and the resistance to quinolones related to mutations in the gyrA and parC genes.

Transcriptional Analysis of the vanC Cluster from Enterococcus gallinarum Strains with Constitutive and Inducible Vancomycin Resistance

Panesso, Diana; Abadía-Patiño, Lorena; Vanegas, Natasha; Reynolds, Peter E.; Courvalin, Patrice; Arias, Cesar A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/2005 Português
Relevância na Pesquisa
66.75271%
The vanC glycopeptide resistance gene cluster encodes enzymes required for synthesis of peptidoglycan precursors ending in d-Ala-d-Ser. Enterococcus gallinarum BM4174 and SC1 are constitutively and inducibly resistant to vancomycin, respectively. Analysis of peptidoglycan precursors in both strains indicated that UDP-MurNAc-tetrapeptide and UDP-MurNAc-pentapeptide[d-Ser] were synthesized in E. gallinarum SC1 only in the presence of vancomycin (4 μg/ml), whereas the “resistance” precursors accumulated in the cytoplasm of BM4174 cells under both inducing and noninducing conditions. Northern hybridization and reverse transcription-PCR experiments revealed that all the genes from the cluster, vanC-1, vanXYC, vanT, vanRC, and vanSC, were transcribed from a single promoter. In the inducible SC1 isolate, transcriptional regulation appeared to be responsible for inducible expression of resistance. Promoter mapping in E. gallinarum BM4174 revealed that the transcriptional start site was located 30 nucleotides upstream from vanC-1 and that the −10 promoter consensus sequence had high identity with that of the vanA cluster. Comparison of the deduced sequence of the vanSC genes from isolates with constitutive and inducible resistance revealed several amino acid substitutions located in the X box (R200L) and in the region between the F and G2 boxes (D312N...

DNA Sequence and Comparative Genomics of pAPEC-O2-R, an Avian Pathogenic Escherichia coli Transmissible R Plasmid

Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /11/2005 Português
Relevância na Pesquisa
66.75271%
In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance.

In Vivo Transfer of the vanA Resistance Gene from an Enterococcus faecium Isolate of Animal Origin to an E. faecium Isolate of Human Origin in the Intestines of Human Volunteers

Lester, Camilla H.; Frimodt-Møller, Niels; Sørensen, Thomas Lund; Monnet, Dominique L.; Hammerum, Anette M.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /02/2006 Português
Relevância na Pesquisa
66.73107%
Transient colonization by vancomycin-resistant enterococci of animal origin has been documented in the intestines of humans. However, little is known about whether transfer of the vanA gene occurs in the human intestine. Six volunteers ingested a vancomycin-resistant Enterococcus faecium isolate of chicken origin, together with a vancomycin-susceptible E. faecium recipient of human origin. Transconjugants were recovered in three of six volunteers. In one volunteer, not only was vancomycin resistance transferred, but also quinupristin-dalfopristin resistance. This study shows that transfer of the vanA gene from an E. faecium isolate of animal origin to an E. faecium isolate of human origin can occur in the intestines of humans. It suggests that transient intestinal colonization by enterococci carrying mobile elements with resistance genes represents a risk for spread of resistance genes to other enterococci that are part of the human indigenous flora, which can be responsible for infections in certain groups of patients, e.g., immunocompromised patients.

CTX-M-Type Extended-Spectrum β-Lactamases in Italy: Molecular Epidemiology of an Emerging Countrywide Problem

Mugnaioli, Claudia; Luzzaro, Francesco; De Luca, Filomena; Brigante, Gioconda; Perilli, Mariagrazia; Amicosante, Gianfranco; Stefani, Stefania; Toniolo, Antonio; Rossolini, Gian Maria
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /08/2006 Português
Relevância na Pesquisa
66.75205%
A nationwide survey of extended-spectrum β-lactamase (ESBL) production among Enterobacteriaceae, carried out in 2003, showed that CTX-M-type enzymes have achieved a sizeable prevalence among ESBL producers in Italy, mostly in Escherichia coli and, to a lesser extent, in Klebsiella pneumoniae. In this work, we report on the molecular epidemiology of the CTX-M-producing isolates from that survey and on the mechanisms of dissemination of these emerging resistance determinants. The CTX-M-producing isolates were detected in 10 of the 11 participating centers distributed across the Italian national territory, although at remarkably variable rates in different centers (1.2 to 49.5% of the ESBL producers). All CTX-M determinants were of group 1, with CTX-M-15 and CTX-M-1 being the most prevalent variants (60% and 35%, respectively) and CTX-M-32 carried by a minority (5%) of isolates. Each variant was detected both in E. coli and in K. pneumoniae. Genotyping of the CTX-M-producing isolates by random amplification of polymorphic DNA revealed a notable diversity, especially among those producing CTX-M-1, while clonal expansion was evident with some CTX-M-15-producing strains. Mating experiments revealed a higher overall transferability of blaCTX-M-1 and blaCTX-M-32 than of blaCTX-M-15. Coresistance to quinolones and aminoglycosides was overall higher with the CTX-M-15-producing isolates. The present results indicate that CTX-M-producing strains are now widespread across the Italian territory and underscore the emerging role of these ESBL determinants in the European setting. They also reveal notable differences in the dissemination mechanisms of genes encoding different CTX-M variants of the same lineage.

A Redox Basis for Metronidazole Resistance in Helicobacter pylori▿

Kaakoush, N. O.; Asencio, C.; Mégraud, F.; Mendz, G. L.
Fonte: American Society for Microbiology (ASM) Publicador: American Society for Microbiology (ASM)
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
66.751504%
Metronidazole resistance in Helicobacter pylori has been attributed to mutations in rdxA or frxA. Insufficient data correlating RdxA and/or FrxA with the resistant phenotype, and the emergence of resistant strains with no mutations in either rdxA or frxA, indicated that the molecular basis of H. pylori resistance to metronidazole required further characterization. The rdxA and frxA genes of four matched pairs of metronidazole-susceptible and -resistant strains were sequenced. The resistant strains had mutations in either rdxA, frxA, neither gene, or both genes. The reduction rates of five substrates suggested that metabolic differences between susceptible and resistant strains cannot be explained only by mutations in rdxA and/or frxA. A more global approach to understanding the resistance phenotype was taken by employing two-dimensional gel electrophoresis combined with tandem mass spectrometry analyses to identify proteins differentially expressed by the matched pair of strains with no mutations in rdxA or frxA. Proteins involved in the oxireduction of ferredoxin were downregulated in the resistant strain. Other redox enzymes, such as thioredoxin reductase, alkyl hydroperoxide reductase, and superoxide dismutase, showed a pI change in the resistant strain. The data suggested that metronidazole resistance involved more complex metabolic changes than specific gene mutations...

Piperaquine Resistance Is Associated with a Copy Number Variation on Chromosome 5 in Drug-Pressured Plasmodium falciparum Parasites▿†

Eastman, Richard T.; Dharia, Neekesh V.; Winzeler, Elizabeth A.; Fidock, David A.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /08/2011 Português
Relevância na Pesquisa
66.75373%
The combination of piperaquine and dihydroartemisinin has recently become the official first-line therapy in several Southeast Asian countries. The pharmacokinetic mismatching of these drugs, whose plasma half-lives are ∼20 days and ∼1 h, respectively, implies that recrudescent or new infections emerging shortly after treatment cessation will encounter piperaquine as a monotherapy agent. This creates substantial selection pressure for the emergence of resistance. To elucidate potential resistance determinants, we subjected cloned Plasmodium falciparum Dd2 parasites to continuous piperaquine pressure in vitro (47 nM; ∼2-fold higher than the Dd2 50% inhibitory concentration [IC50]). The phenotype of outgrowth parasites was assayed in two clones, revealing an IC50 against piperaquine of 2.1 μM and 1.7 μM, over 100-fold greater than that of the parent. To identify the genetic determinant of resistance, we employed comparative whole-genome hybridization analysis. Compared to the Dd2 parent, this analysis found (in both resistant clones) a novel single-nucleotide polymorphism in P. falciparum crt (pfcrt), deamplification of an 82-kb region of chromosome 5 (that includes pfmdr1), and amplification of an adjacent 63-kb region of chromosome 5. Continued propagation without piperaquine selection pressure resulted in “revertant” piperaquine-sensitive parasites. These retained the pfcrt polymorphism and further deamplified the chromosome 5 segment that encompasses pfmdr1; however...

Spread of ISCR1 Elements Containing blaDHA-1 and Multiple Antimicrobial Resistance Genes Leading to Increase of Flomoxef Resistance in Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae▿

Lee, Chen-Hsiang; Liu, Jien-Wei; Li, Chia-Chin; Chien, Chun-Chih; Tang, Ya-Fen; Su, Lin-Hui
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /09/2011 Português
Relevância na Pesquisa
66.750063%
Increasing resistance to quinolones, aminoglycosides, and/or cephamycins in extended-spectrum-β-lactamase (ESBL)-producing Enterobacteriaceae exacerbates the already limited antibiotic treatment options for infections due to these microbes. In this study, the presence of resistance determinants for these antimicrobial agents was examined by PCR among ESBL-producing Klebsiella pneumoniae (ESBL-KP) isolates that caused bacteremia. Pulsed-field gel electrophoresis was used to differentiate the clonal relationship among the isolates studied. Transferability and the location of the resistance genes were analyzed by conjugation experiments, followed by DNA-DNA hybridization. Among the 94 ESBL-KP isolates studied, 20 isolates of flomoxef-resistant ESBL-KP were identified. They all carried a DHA-1 gene and were genetically diverse. CTX-M genes were found in 18 of the isolates. Among these DHA-1/CTX-M-producing K. pneumoniae isolates, ISCR1 was detected in 13 (72%) isolates, qnr genes (1 qnrA and 17 qnrB genes) were detected in 18 (100%), aac(6′)-Ib-cr was detected in 11 (61%), and 16S rRNA methylase (all armA genes) was detected in 14 (78%). Four transconjugants were available for further analysis, and qnrB4, aac(6′)-Ib-cr, armA, and blaDHA-1 were all identified on these self-transferable blaCTX-M-carrying plasmids. The genetic environments of ISCR1 associated with armA...

Mechanisms of Action of Escapin, a Bactericidal Agent in the Ink Secretion of the Sea Hare Aplysia californica: Rapid and Long-Lasting DNA Condensation and Involvement of the OxyR-Regulated Oxidative Stress Pathway

Ko, Ko-Chun; Tai, Phang C.; Derby, Charles D.
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /04/2012 Português
Relevância na Pesquisa
66.747607%
The marine snail Aplysia californica produces escapin, an l-amino acid oxidase, in its defensive ink. Escapin uses l-lysine to produce diverse products called escapin intermediate products of l-lysine (EIP-K), including α-amino-ε-caproic acid, Δ1-piperidine-2-carboxylic acid, and Δ2-piperidine-2-carboxylic acid. EIP-K and H2O2 together, but neither alone, is a powerful bactericide. Here, we report bactericidal mechanisms of escapin products on Escherichia coli. We show that EIP-K and H2O2 together cause rapid and long-lasting DNA condensation: 2-min treatment causes significant DNA condensation and killing, and 10-min treatment causes maximal effect, lasting at least 70 h. We isolated two mutants resistant to EIP-K plus H2O2, both having a single missense mutation in the oxidation regulatory gene, oxyR. A complementation assay showed that the mutated gene, oxyR(A233V), renders resistance to EIP-K plus H2O2, and a gene dosage effect leads to reduction of resistance for strains carrying wild-type oxyR. Temperature stress with EIP-K does not produce the bactericidal effect, suggesting the effect is due to a specific response to oxidative stress. The null mutant for any single DNA-binding protein—Dps, H-NS, Hup, Him, or MukB—was not resistant to EIP-K plus H2O2...

Assessing the Cost-Benefit Effect of a Plasmodium falciparum Drug Resistance Mutation on Parasite Growth In Vitro

Fröberg, Gabrielle; Ferreira, Pedro Eduardo; Mårtensson, Andreas; Ali, Abdullah; Björkman, Anders; Gil, José Pedro
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /02/2013 Português
Relevância na Pesquisa
66.750063%
Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost...

Mutational and Transcriptomic Changes Involved in the Development of Macrolide Resistance in Campylobacter jejuni

Hao, Haihong; Yuan, Zonghui; Shen, Zhangqi; Han, Jing; Sahin, Orhan; Liu, Peng; Zhang, Qijing
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /03/2013 Português
Relevância na Pesquisa
66.732544%
Macrolide antibiotics are important for clinical treatment of infections caused by Campylobacter jejuni. Development of resistance to this class of antibiotics in Campylobacter is a complex process, and the dynamic molecular changes involved in this process remain poorly defined. Multiple lineages of macrolide-resistant mutants were selected by stepwise exposure of C. jejuni to escalating doses of erythromycin or tylosin. Mutations in target genes were determined by DNA sequencing, and the dynamic changes in the expression of antibiotic efflux transporters and the transcriptome of C. jejuni were examined by real-time reverse transcription-PCR, immunoblotting, and DNA microarray analysis. Multiple types of mutations in ribosomal proteins L4 and L22 occurred early during stepwise selection. On the contrary, the mutations in the 23S rRNA gene, mediating high resistance to macrolides, were observed only in the late-stage mutants. Upregulation of antibiotic efflux genes was observed in the intermediately resistant mutants, and the magnitude of upregulation declined with the occurrence of mutations in the 23S rRNA gene. DNA microarray analysis revealed the differential expression of 265 genes, most of which occurred in the intermediate mutant...

In Vivo Studies Suggest that Induction of VanS-Dependent Vancomycin Resistance Requires Binding of the Drug to d-Ala-d-Ala Termini in the Peptidoglycan Cell Wall

Kwun, Min Jung; Novotna, Gabriela; Hesketh, Andrew R.; Hill, Lionel; Hong, Hee-Jeon
Fonte: American Society for Microbiology Publicador: American Society for Microbiology
Tipo: Artigo de Revista Científica
Publicado em /09/2013 Português
Relevância na Pesquisa
66.731494%
VanRS two-component regulatory systems are key elements required for the transcriptional activation of inducible vancomycin resistance genes in bacteria, but the precise nature of the ligand signal that activates these systems has remained undefined. Using the resistance system in Streptomyces coelicolor as a model, we have undertaken a series of in vivo studies which indicate that the VanS sensor kinase in VanB-type resistance systems is activated by vancomycin in complex with the d-alanyl-d-alanine (d-Ala-d-Ala) termini of cell wall peptidoglycan (PG) precursors. Complementation of an essential d-Ala-d-Ala ligase activity by constitutive expression of vanA encoding a bifunctional d-Ala-d-Ala and d-alanyl-d-lactate (d-Ala-d-Lac) ligase activity allowed construction of strains that synthesized variable amounts of PG precursors containing d-Ala-d-Ala. Assays quantifying the expression of genes under VanRS control showed that the response to vancomycin in these strains correlated with the abundance of d-Ala-d-Ala-containing PG precursors; strains producing a lower proportion of PG precursors terminating in d-Ala-d-Ala consistently exhibited a lower response to vancomycin. Pretreatment of wild-type cells with vancomycin or teicoplanin to saturate and mask the d-Ala-d-Ala binding sites in nascent PG also blocked the transcriptional response to subsequent vancomycin exposure...

Transmitted Drug Resistance in the CFAR Network of Integrated Clinical Systems Cohort: Prevalence and Effects on Pre-Therapy CD4 and Viral Load

Poon, Art F. Y.; Aldous, Jeannette L.; Mathews, W. Christopher; Kitahata, Mari; Kahn, James S.; Saag, Michael S.; Frost, Simon D. W.; Haubrich, Richard H.; Boswell, Stephen Louis; Rodríguez, Benigno
Fonte: Public Library of Science Publicador: Public Library of Science
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
66.730596%
Human immunodeficiency virus type 1 (HIV-1) genomes often carry one or more mutations associated with drug resistance upon transmission into a therapy-naïve individual. We assessed the prevalence and clinical significance of transmitted drug resistance (TDR) in chronically-infected therapy-naïve patients enrolled in a multi-center cohort in North America. Pre-therapy clinical significance was quantified by plasma viral load (pVL) and CD4+ cell count (CD4) at baseline. Naïve bulk sequences of HIV-1 protease and reverse transcriptase (RT) were screened for resistance mutations as defined by the World Health Organization surveillance list. The overall prevalence of TDR was 14.2%. We used a Bayesian network to identify co-transmission of TDR mutations in clusters associated with specific drugs or drug classes. Aggregate effects of mutations by drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the Stanford HIV Database algorithm. Transmitted resistance to both classes of reverse transcriptase inhibitors was significantly associated with lower CD4, but had opposing effects on pVL. In contrast, position-specific analyses of TDR mutations revealed substantial effects on CD4 and pVL at several residue positions that were being masked in the aggregate analyses...

Spinoza e o Direito de Resistência; Spinoza and the Right of Resistance

de Guimaraens, Francisco; PUC-Rio; Rocha, Maurício; Pontifícia Universidade Católica do Rio de Janeiro
Fonte: Fundação José Arthur Boiteux Publicador: Fundação José Arthur Boiteux
Tipo: info:eu-repo/semantics/article; info:eu-repo/semantics/publishedVersion; Formato: application/pdf
Publicado em 17/12/2014 Português
Relevância na Pesquisa
66.75271%
http://dx.doi.org/10.5007/2177-7055.2014v35n69p183Este trabalho tem o objetivo de analisar o conceito de direito de resistência formulado por Spinoza. Para atingir tal objetivo, desenvolve-se, de início, neste trabalho análise sobre as circunstâncias teóricas e históricas em meio às quais Spinoza construiu seu conceito de direito de resistência. Em seguida, realiza-se investigação sobre determinadas categorias do pensamento político-jurídico spinozano pertinentes ao conceito de direito de resistência, como as noções de direito natural, a relação entre obediência política e resistência e os modos de expressão política e institucional do direito de resistência propostos por Spinoza.; http://dx.doi.org/10.5007/2177-7055.2014v35n69p183This work aims at the analysis of the Spinoza’s concept of right of resistance. At the beginning of this work is developed an investigation about the historic and theoretical circumstances that influenced the Spinoza’s reflections about the right of resistance. After this investigation, some spinozian political and juridical categories related to the right of resistance concept are analysed, such as: the idea of natural right, the relation between political obedience and resistance and the political and institutional mechanisms of right of resistance proposed by Spinoza.