Página 8 dos resultados de 473 itens digitais encontrados em 0.037 segundos
Resultados filtrados por Publicador: Harvard University

Engineering Plasmonic Waves in Two-Dimensional Electron Systems

Yeung, Yan Mui Kitty
Fonte: Harvard University Publicador: Harvard University
Tipo: Thesis or Dissertation; text Formato: application/pdf
Relevância na Pesquisa
Plasmonic waves are waves of mobile charge carriers caused by their collective oscillations. They can be excited in solid-state conducting materials and behave distinctively in different numbers of dimensions. With fabrication technologies available for solid-state materials, one can functionalize the dimensional properties by engineering the boundaries and interfaces of the plasmonic wave medium. For instance, plasmonic waves in two-dimensional (2D) conductors, such as semiconductor heterojunction and graphene, exhibit strong subwavelength confinement – with a wavelength about a factor of 100 below the electromagnetic wavelength at the same frequency. Hence, 2D plasmonic devices can be constructed below the diffraction limit of light. To utilize this ultra-subwavelength confinement is the main motivation of this thesis. This thesis establishes the machinery behind the unique behaviors of 2D plasmons, and compares them to plasmons in higher dimensions, namely plasma oscillations in bulk materials and surface plasmons on conducting-insulating interfaces. The Coulomb restoring force and mobile charge carrier inertia causing the collective oscillations are formulated into a transmission-line model. This formulation is used to engineer ultra-subwavelength plasmonic circuits in gigahertz integrated electronics and terahertz metamaterials. As one of the demonstration platforms...