Página 1 dos resultados de 18425 itens digitais encontrados em 0.005 segundos

Disequilibrium Coefficient: A Bayesian Perspective

BRENTANI, Helena; NAKANO, Eduardo Y.; MARTINS, Camila B.; IZBICKI, Rafael; PEREIRA, Carlos Alberto
Fonte: BERKELEY ELECTRONIC PRESS Publicador: BERKELEY ELECTRONIC PRESS
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
352.0172%
Hardy-Weinberg Equilibrium (HWE) is an important genetic property that populations should have whenever they are not observing adverse situations as complete lack of panmixia, excess of mutations, excess of selection pressure, etc. HWE for decades has been evaluated; both frequentist and Bayesian methods are in use today. While historically the HWE formula was developed to examine the transmission of alleles in a population from one generation to the next, use of HWE concepts has expanded in human diseases studies to detect genotyping error and disease susceptibility (association); Ryckman and Williams (2008). Most analyses focus on trying to answer the question of whether a population is in HWE. They do not try to quantify how far from the equilibrium the population is. In this paper, we propose the use of a simple disequilibrium coefficient to a locus with two alleles. Based on the posterior density of this disequilibrium coefficient, we show how one can conduct a Bayesian analysis to verify how far from HWE a population is. There are other coefficients introduced in the literature and the advantage of the one introduced in this paper is the fact that, just like the standard correlation coefficients, its range is bounded and it is symmetric around zero (equilibrium) when comparing the positive and the negative values. To test the hypothesis of equilibrium...

Using Bayesian networks with rule extraction to infer the risk of weed infestation in a corn-crop

BRESSAN, Glaucia M.; OLIVEIRA, Vilma A.; HRUSCHKA JR., Estevam R.; NICOLETTI, Maria C.
Fonte: PERGAMON-ELSEVIER SCIENCE LTD Publicador: PERGAMON-ELSEVIER SCIENCE LTD
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
353.76566%
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.; Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)

Bayesian network classifiers: Beyond classification accuracy

SANTOS, Edimilson B. dos; HRUSCHKA JR., Estevam R.; HRUSCHKA, Eduardo R.; EBECKEN, Nelson F. F.
Fonte: IOS PRESS Publicador: IOS PRESS
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
352.0172%
This work proposes and discusses an approach for inducing Bayesian classifiers aimed at balancing the tradeoff between the precise probability estimates produced by time consuming unrestricted Bayesian networks and the computational efficiency of Naive Bayes (NB) classifiers. The proposed approach is based on the fundamental principles of the Heuristic Search Bayesian network learning. The Markov Blanket concept, as well as a proposed ""approximate Markov Blanket"" are used to reduce the number of nodes that form the Bayesian network to be induced from data. Consequently, the usually high computational cost of the heuristic search learning algorithms can be lessened, while Bayesian network structures better than NB can be achieved. The resulting algorithms, called DMBC (Dynamic Markov Blanket Classifier) and A-DMBC (Approximate DMBC), are empirically assessed in twelve domains that illustrate scenarios of particular interest. The obtained results are compared with NB and Tree Augmented Network (TAN) classifiers, and confinn that both proposed algorithms can provide good classification accuracies and better probability estimates than NB and TAN, while being more computationally efficient than the widely used K2 Algorithm.; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); Brazilian research agencies CNPq; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP); Brazilian research agencies...

Comparison between the complete Bayesian method and empirical Bayesian method for ARCH models using Brazilian financial time series

Oliveira, Sandra Cristina de; Andrade Filho, Marinho Gomes de
Fonte: Sociedade Brasileira de Pesquisa Operacional Publicador: Sociedade Brasileira de Pesquisa Operacional
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
352.0172%
In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.; Desenvolvimento da UNESP - FUNDUNESP de apoio financeiro (Processo no. 00502/07-DF)

Avaliação de redes Bayesianas para imputação em variáveis qualitativas e quantitativas.; Evaluating Bayesian networks for imputation with qualitative and quantitative variables.

Magalhães, Ismenia Blavatsky de
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Tese de Doutorado Formato: application/pdf
Publicado em 29/03/2007 Português
Relevância na Pesquisa
352.98645%
Redes Bayesianas são estruturas que combinam distribuições de probabilidade e grafos. Apesar das redes Bayesianas terem surgido na década de 80 e as primeiras tentativas em solucionar os problemas gerados a partir da não resposta datarem das décadas de 30 e 40, a utilização de estruturas deste tipo especificamente para imputação é bem recente: em 2002 em institutos oficiais de estatística e em 2003 no contexto de mineração de dados. O intuito deste trabalho é o de fornecer alguns resultados da aplicação de redes Bayesianas discretas e mistas para imputação. Para isso é proposto um algoritmo que combina o conhecimento de especialistas e dados experimentais observados de pesquisas anteriores ou parte dos dados coletados. Ao empregar as redes Bayesianas neste contexto, parte-se da hipótese de que uma vez preservadas as variáveis em sua relação original, o método de imputação será eficiente em manter propriedades desejáveis. Neste sentido, foram avaliados três tipos de consistências já existentes na literatura: a consistência da base de dados, a consistência lógica e a consistência estatística, e propôs-se a consistência estrutural, que se define como sendo a capacidade de a rede manter sua estrutura na classe de equivalência da rede original quando construída a partir dos dados após a imputação. É utilizada pela primeira vez uma rede Bayesiana mista para o tratamento da não resposta em variáveis quantitativas. Calcula-se uma medida de consistência estatística para redes mistas usando como recurso a imputação múltipla para a avaliação de parâmetros da rede e de modelos de regressão. Como aplicação foram conduzidos experimentos com base nos dados de domicílios e pessoas do Censo Demográfico 2000 do município de Natal e nos dados de um estudo sobre homicídios em Campinas. Dos resultados afirma-se que as redes Bayesianas para imputação em atributos discretos são promissoras...

Redes Bayesianas aplicadas à análise do risco de crédito.; Bayesian networks applied to the anilysis of credit risk.

Karcher, Cristiane
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 26/02/2009 Português
Relevância na Pesquisa
352.0172%
Modelos de Credit Scoring são utilizados para estimar a probabilidade de um cliente proponente ao crédito se tornar inadimplente, em determinado período, baseadas em suas informações pessoais e financeiras. Neste trabalho, a técnica proposta em Credit Scoring é Redes Bayesianas (RB) e seus resultados foram comparados aos da Regressão Logística. As RB avaliadas foram as Bayesian Network Classifiers, conhecidas como Classificadores Bayesianos, com seguintes tipos de estrutura: Naive Bayes, Tree Augmented Naive Bayes (TAN) e General Bayesian Network (GBN). As estruturas das RB foram obtidas por Aprendizado de Estrutura a partir de uma base de dados real. Os desempenhos dos modelos foram avaliados e comparados através das taxas de acerto obtidas da Matriz de Confusão, da estatística Kolmogorov-Smirnov e coeficiente Gini. As amostras de desenvolvimento e de validação foram obtidas por Cross-Validation com 10 partições. A análise dos modelos ajustados mostrou que as RB e a Regressão Logística apresentaram desempenho similar, em relação a estatística Kolmogorov- Smirnov e ao coeficiente Gini. O Classificador TAN foi escolhido como o melhor modelo, pois apresentou o melhor desempenho nas previsões dos clientes maus pagadores e permitiu uma análise dos efeitos de interação entre variáveis.; Credit Scoring Models are used to estimate the insolvency probability of a customer...

Abordagem clássica e bayesiana para os modelos de séries temporais da família GARMA com aplicações para dados de contagem; Classical and bayesian approach for time series models of the family GARMA with applications to count data

Philippsen, Adriana Strieder
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 31/03/2011 Português
Relevância na Pesquisa
352.98645%
Nesta dissertação estudou-se o modelo GARMA para modelar séries temporais de dados de contagem com as distribuições condicionais de Poisson, binomial e binomial negativa. A principal finalidade foi analisar no contexto clássico e bayesiano, o desempenho e a qualidade do ajuste dos modelos de interesse, bem como o desempenho dos percentis de cobertura dos intervalos de confiança dos parâmetros para os modelos adotados. Para atingir tal finalidade considerou-se a análise dos estimadores pontuais bayesianos e foram analisados intervalos de credibilidade. Neste estudo é proposta uma distribuição a priori conjugada para os parâmetros dos modelos e busca-se a distribuição a posteriori, a qual associada a certas funções de perda permite encontrar estimativas bayesianas para os parâmetros. Na abordagem clássica foram calculados estimadores de máxima verossimilhança, usandose o método de score de Fisher e verificou-se por meio de simulação a consistência dos mesmos. Com os estudos desenvolvidos pode-se observar que, tanto a inferência clássica quanto a inferência bayesiana para os parâmetros dos modelos em questão, apresentou boas propriedades analisadas por meio das propriedades dos estimadores pontuais. A última etapa do trabalho consiste na análise de um conjunto de dados reais...

Redes Bayesianas: um método para avaliação de interdependência e contágio em séries temporais multivariadas; Bayesian Networks: a method for evaluation of interdependence and contagion in multivariate time series

Carvalho, João Vinícius de França
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 25/04/2011 Português
Relevância na Pesquisa
352.0172%
O objetivo deste trabalho consiste em identificar a existência de contágio financeiro utilizando a metodologia de redes bayesianas. Além da rede bayesiana, a análise da interdependência de mercados internacionais em períodos de crises financeiras, ocorridas entre os anos 1996 e 2009, foi modelada com outras duas técnicas - modelos GARCH multivariados e de Cópulas, envolvendo países nos quais foi possível avaliar seus efeitos e que foram objetos de estudos similares na literatura. Com os períodos de crise bem definidos e metodologia calcada na teoria de grafos e na inferência bayesiana, executou-se uma análise sequencial, em que as realidades que precediam períodos de crise foram consideradas situações a priori para os eventos (verossimilhanças). Desta combinação resulta a nova realidade (a posteriori), que serve como priori para o período subsequente e assim por diante. Os resultados apontaram para grande interligação entre os mercados e diversas evidências de contágio em períodos de crise financeira, com causadores bem definidos e com grande respaldo na literatura. Ademais, os pares de países que apresentaram evidências de contágio financeiro pelas redes bayesianas em mais períodos de crises foram os mesmos que apresentaram os mais altos valores dos parâmetros estimados pelas cópulas e também aqueles cujos parâmetros foram mais fortemente significantes no modelo GARCH multivariado. Assim...

Inteligência dinâmica nas organizações: a utilização de redes bayesianas na redução de incertezas nos processos de inteligência competitiva; Dynamic intelligence in organizations: the usage of bayesian networks to reduce uncertainties in competitive intelligence processes

Del Rey, Alexandre
Fonte: Biblioteca Digitais de Teses e Dissertações da USP Publicador: Biblioteca Digitais de Teses e Dissertações da USP
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 24/01/2012 Português
Relevância na Pesquisa
352.0172%
O objetivo da dissertação é explorar Redes Bayesianas como ferramenta para reduzir incertezas nos processos de Inteligência Competitiva. Nela, através da revisão de conceitos de Planejamento Estratégico, Tomada de Decisão, Inteligência Competitiva e da capacidade de inferência de Redes Bayesianas é proposta uma abordagem de utilização destas redes com este intuito. Para tanto um estudo de caso apresenta o passo a passo da implementação da abordagem proposta em um ambiente simulado de gestão. No estudo de caso, cada uma das etapas da modelagem de cenários é descrita em detalhes, salientando os cuidados necessários para esta modelagem. Com a modelagem finalizada, dois quase-experimentos foram conduzidos em ambientes simulados para avaliar a percepção e o desempenho dos tomadores de decisão que utilizaram Redes Bayesianas em relação aos tomadores de decisão que não a utilizaram. Os dados obtidos no primeiro quase-experimento não se mostraram confiáveis e no segundo quase-experimento não formaram uma amostra significativa do ponto de vista estatístico. Não obstante, foi possível apresentar contribuições através das observações e dados obtidos nestes quaseexperimentos conduzidos. Do ponto de vista processual...

Integrating BDI model and Bayesian networks; Integrando modelo BDI e redes Bayesianas

Fagundes, Moser Silva
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
352.98645%
Individualmente, as linhas de pesquisa da Inteligência Artificial têm proposto abordagens para a resolução de inúmeros problemas complexos do mundo real. O paradigma orientado a agentes provê os agentes autônomos, capazes de perceber os seus ambientes, reagir de acordo com diferentes circunstâncias e estabelecer interações sociais com outros agentes de software ou humanos. As redes Bayesianas fornecem uma maneira de representar graficamente as distribuições de probabilidades condicionais e permitem a realização de raciocínios probabilísticos baseados em evidências. As ontologias são especificações explícitas e formais de conceituações, que são usadas em uma variedade de áreas de pesquisa, incluindo os Sistemas Multiagentes. Contudo, existem aplicações cujos requisitos não podem ser atendidos por uma única tecnologia. Circunstâncias como estas exigem a integração de tecnologias desenvolvidas por distintas áreas da Ciência da Computação. Esta dissertação trata a integração do modelo de agentes BDI (Belief-Desire-Intention) e das redes Bayesianas. Além disso, é adotada uma abordagem baseada em ontologias para representar o conhecimento incerto dos agentes. O primeiro passo em direção a integração foi o desenvolvimento de uma ontologia para representar a estrutura das redes Bayesinas. Esta ontologia tem como principal objetivo permitir a interoperabilidade agentes compatíveis com a arquitetura proposta. No entanto...

Assessment of data-driven bayesian networks in software effort prediction

Tierno, Ivan Alexandre Paiz
Fonte: Universidade Federal do Rio Grande do Sul Publicador: Universidade Federal do Rio Grande do Sul
Tipo: Dissertação Formato: application/pdf
Português
Relevância na Pesquisa
353.76566%
Software prediction unveils itself as a difficult but important task which can aid the manager on decision making, possibly allowing for time and resources sparing, achieving higher software quality among other benefits. One of the approaches set forth to perform this task has been the application of machine learning techniques. One of these techniques are Bayesian Networks, which have been promoted for software projects management due to their special features. However, the pre-processing procedures related to their application remain mostly neglected in this field. In this context, this study presents an assessment of automatic Bayesian Networks (i.e., Bayesian Networks solely based on data) on three public data sets and brings forward a discussion on data pre-processing procedures and the validation approach. We carried out a comparison of automatic Bayesian Networks against mean and median baseline models and also against ordinary least squares regression with a logarithmic transformation, which has been recently deemed in a comprehensive study as a top performer with regard to accuracy. The results obtained through careful validation procedures support that automatic Bayesian Networks can be competitive against other techniques...

Bayesian networks for high-dimensional data with complex mean structure.

Kasza, Jessica Eleonore
Fonte: Universidade de Adelaide Publicador: Universidade de Adelaide
Tipo: Tese de Doutorado
Publicado em //2010 Português
Relevância na Pesquisa
352.98645%
In a microarray experiment, it is expected that there will be correlations between the expression levels of different genes under study. These correlation structures are of great interest from both biological and statistical points of view. From a biological perspective, the identification of correlation structures can lead to an understanding of genetic pathways involving several genes, while the statistical interest, and the emphasis of this thesis, lies in the development of statistical methods to identify such structures. However, the data arising from microarray studies is typically very high-dimensional, with an order of magnitude more genes being considered than there are samples of each gene. This leads to difficulties in the estimation of the dependence structure of all genes under study. Graphical models and Bayesian networks are often used in these situations, providing flexible frameworks in which dependence structures for high-dimensional data sets can be considered. The current methods for the estimation of dependence structures for high-dimensional data sets typically assume the presence of independent and identically distributed samples of gene expression values. However, often the data available will have a complex mean structure and additional components of variance. Given such data...

Moving beyond qualitative evaluations of Bayesian models of cognition

Hemmer, P.; Tauber, S.; Steyvers, M.
Fonte: Springer Publicador: Springer
Tipo: Artigo de Revista Científica
Publicado em //2015 Português
Relevância na Pesquisa
355.39492%
Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance...

Application of Bayesian Modeling in High-throughput Genomic Data and Clinical Trial Design

Xu, Yanxun
Fonte: Universidade Rice Publicador: Universidade Rice
Português
Relevância na Pesquisa
352.98645%
My dissertation mainly focuses on developing Bayesian models for high-throughput data and clinical trial design. Next-generation sequencing (NGS) technology generates millions of short reads, which provide valuable information for various aspects of cellular activities and biological functions. So far, NGS techniques have been applied in quantitatively measurement of diverse platforms, such as RNA expression, DNA copy number variation (CNV) and DNA methylation. Although NGS is powerful and largely expedite biomedical research in various fields, challenge still remains due to the high modality of disparate high-throughput data, high variability of data acquisition, high dimensionality of biomedical data, and high complexity of genomics and proteomics, e.g., how to extract useful information for the enormous data produced by NGS or how to effectively integrate the information from different platforms. Bayesian has the potential to fill in these gaps. In my dissertation, I will propose Bayesian-based approaches to address above challenges so that we can take full advantage of the NGS technology. It includes three specific topics: (1) proposing BM-Map: a Bayesian mapping of multireads for NGS data, (2) proposing a Bayesian graphical model for integrative analysis of TCGA data...

Exact Bayesian regression of piecewise constant functions

Hutter, Marcus
Fonte: International Society for Bayesian Analysis Publicador: International Society for Bayesian Analysis
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
450.77867%
We derive an exact and efficient Bayesian regression algorithm for piecewise constant functions of unknown segment number, boundary locations, and levels. The derivation works for any noise and segment level prior, e.g. Cauchy which can handle outliers. We derive simple but good estimates for the in-segment variance. We also propose a Bayesian regression curve as a better way of smoothing data without blurring boundaries. The Bayesian approach also allows straightforward determination of the evidence, break probabilities and error estimates, useful for model selection and significance and robustness studies. We discuss the performance on synthetic and real-world examples. Many possible extensions are discussed.

Inferencia Bayesiana para valores extremos; Bayesian inference for extremes

Diego Fernando de Bernardini
Fonte: Biblioteca Digital da Unicamp Publicador: Biblioteca Digital da Unicamp
Tipo: Dissertação de Mestrado Formato: application/pdf
Publicado em 23/02/2010 Português
Relevância na Pesquisa
352.98645%
Iniciamos o presente trabalho apresentando uma breve introdução a teoria de valores extremos, estudando especialmente o comportamento da variável aleatória que representa o máximo de uma sequência de variáveis aleatórias independentes e identicamente distribuídas. Vemos que o Teorema dos Tipos Extremos (ou Teorema de Fisher-Tippett) constitui uma ferramenta fundamental no que diz respeito ao estudo do comportamento assintóticos destes máximos, permitindo a modelagem de dados que representem uma sequência de observações de máximos de um determinado fenômeno ou processo aleatório, através de uma classe de distribuições conhecida como família de distribuições de Valor Extremo Generalizada (Generalized Extreme Value - GEV). A distribuição Gumbel, associada ao máximo de distribuições como a Normal ou Gama entre outras, é um caso particular desta família. Torna-se interessante, assim, realizar inferência para os parâmetros desta família. Especificamente, a comparação entre os modelos Gumbel e GEV constitui o foco principal deste trabalho. No Capítulo 1 estudamos, no contexto da inferência clássica, o método de estimação por máxima verossimilhança para estes parâmetros e um procedimento de teste de razão de verossimilhanças adequado para testar a hipótese nula que representa o modelo Gumbel contra a hipótese que representa o modelo completo GEV. Prosseguimos...

Bayesian methods for gravitational waves and neural networks

Graff, Philip B.
Fonte: University of Cambridge; Department of Physics Publicador: University of Cambridge; Department of Physics
Tipo: Thesis; doctoral; PhD
Português
Relevância na Pesquisa
353.76566%
Einstein?s general theory of relativity has withstood 100 years of testing and will soon be facing one of its toughest challenges. In a few years we expect to be entering the era of the first direct observations of gravitational waves. These are tiny perturbations of space-time that are generated by accelerating matter and affect the measured distances between two points. Observations of these using the laser interferometers, which are the most sensitive length-measuring devices in the world, will allow us to test models of interactions in the strong field regime of gravity and eventually general relativity itself. I apply the tools of Bayesian inference for the examination of gravitational wave data from the LIGO and Virgo detectors. This is used for signal detection and estimation of the source parameters. I quantify the ability of a network of ground-based detectors to localise a source position on the sky for electromagnetic follow-up. Bayesian criteria are also applied to separating real signals from glitches in the detectors. These same tools and lessons can also be applied to the type of data expected from planned space-based detectors. Using simulations from the Mock LISA Data Challenges, I analyse our ability to detect and characterise both burst and continuous signals. The two seemingly different signal types will be overlapping and confused with one another for a space-based detector; my analysis shows that we will be able to separate and identify many signals present. Data sets and astrophysical models are continuously increasing in complexity. This will create an additional computational burden for performing Bayesian inference and other types of data analysis. I investigate the application of the MOPED algorithm for faster parameter estimation and data compression. I find that its shortcomings make it a less favourable candidate for further implementation. The framework of an artificial neural network is a simple model for the structure of a brain which can ?learn? functional relationships between sets of inputs and outputs. I describe an algorithm developed for the training of feed-forward networks on pre-calculated data sets. The trained networks can then be used for fast prediction of outputs for new sets of inputs. After demonstrating capabilities on toy data sets...

Universality of Bayesian Predictions

Sancetta, Alessio
Fonte: Faculty of Economics, University of Cambridge, UK Publicador: Faculty of Economics, University of Cambridge, UK
Tipo: Trabalho em Andamento
Português
Relevância na Pesquisa
352.98645%
Given the sequential update nature of Bayes rule, Bayesian methods find natural application to prediction problems. Advances in computational methods allow to routinely use Bayesian methods in econometrics. Hence, there is a strong case for feasible predictions in a Bayesian framework. This paper studies the theoretical properties of Bayesian predictions and shows that under minimal conditions we can derive finite sample bounds for the loss incurred using Bayesian predictions under the Kullback-Leibler divergence. In particular, the concept of universality of predictions is discussed and universality is established for Bayesian predictions in a variety of settings. These include predictions under almost arbitrary loss functions, model averaging, predictions in a non stationary environment and under model miss-specification. Given the possibility of regime switches and multiple breaks in economic series, as well as the need to choose among different forecasting models, which may inevitably be miss-specified, the finite sample results derived here are of interest to economic and financial forecasting.

Bayesian Model Choice in Cumulative Link Ordinal Regression Models

McKinley, Trevelyan; Morters, Michelle; Wood, James L. N.
Fonte: International Society for Bayesian Analysis Publicador: International Society for Bayesian Analysis
Tipo: Article; published version
Português
Relevância na Pesquisa
450.77867%
This is the final version of the article. It was first available from International Society for Bayesian Analysis via http://dx.doi.org/10.1214/14-BA884; The use of the proportional odds (PO) model for ordinal regression is ubiquitous in the literature. If the assumption of parallel lines does not hold for the data, then an alternative is to specify a non-proportional odds (NPO) model, where the regression parameters are allowed to vary depending on the level of the response. However, it is often difficult to fit these models, and challenges regarding model choice and fitting are further compounded if there are a large number of explanatory variables. We make two contributions towards tackling these issues: firstly, we develop a Bayesian method for fitting these models, that ensures the stochastic ordering conditions hold for an arbitrary finite range of the explanatory variables, allowing NPO models to be fitted to any observed data set. Secondly, we use reversible-jump Markov chain Monte Carlo to allow the model to choose between PO and NPO structures for each explanatory variable, and show how variable selection can be incorporated. These methods can be adapted for any monotonic increasing link functions. We illustrate the utility of these approaches on novel data from a longitudinal study of individual-level risk factors affecting body condition score in a dog population in Zenzele...

Bayesian Nonparametric Modeling of Latent Structures

Xing, Zhengming
Fonte: Universidade Duke Publicador: Universidade Duke
Tipo: Dissertação
Publicado em //2014 Português
Relevância na Pesquisa
352.98645%

Unprecedented amount of data has been collected in diverse fields such as social network, infectious disease and political science in this information explosive era. The high dimensional, complex and heterogeneous data imposes tremendous challenges on traditional statistical models. Bayesian nonparametric methods address these challenges by providing models that can fit the data with growing complexity. In this thesis, we design novel Bayesian nonparametric models on dataset from three different fields, hyperspectral images analysis, infectious disease and voting behaviors.

First, we consider analysis of noisy and incomplete hyperspectral imagery, with the objective of removing the noise and inferring the missing data. The noise statistics may be wavelength-dependent, and the fraction of data missing (at random) may be substantial, including potentially entire bands, offering the potential to significantly reduce the quantity of data that need be measured. We achieve this objective by employing Bayesian dictionary learning model, considering two distinct means of imposing sparse dictionary usage and drawing the dictionary elements from a Gaussian process prior, imposing structure on the wavelength dependence of the dictionary elements.

Second...