Página 1 dos resultados de 3715 itens digitais encontrados em 0.052 segundos
Resultados filtrados por Publicador: FIU Digital Commons

Scheduling Medical Application Workloads on Virtualized Computing Systems

Delgado, Javier
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: Artigo de Revista Científica Formato: application/pdf
Português
Relevância na Pesquisa
67.14793%
This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of “cloud computing” services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. A performance prediction methodology applicable to the target environment. A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers)...

A Regression Approach to Execution Time Estimation for Programs Running on Multicore Systems

Alshamlan, Mohammad
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: Artigo de Revista Científica Formato: application/pdf
Português
Relevância na Pesquisa
67.93417%
Execution time estimation plays an important role in computer system design. It is particularly critical in real-time system design, where to meet a deadline can be as important as to ensure the logical correctness of a program. To accurately estimate the execution time of a program can be extremely challenging, since the execution time of a program varies with inputs, the underlying computer architectures, and run-time dynamics, among other factors. The problem becomes even more challenging as computing systems moving from single core to multi-core platforms, with more hardware resources shared by multiple processing cores. The goal of this research is to investigate the relationship between the execution time of a program and the underlying architecture features (e.g. cache size, associativity, memory latency), as well as its run-time characteristics (e.g. cache miss ratios), and based on which, to estimate its execution time on a multi-core platform based on a regression approach. We developed our test platform based on GEM5, an open-source multi-core cycle-accurate simulation tool set. Our experimental results show clearly the strong relationship of the program execution time to architecture features and run-time characteristics. Moreover...

Design and Development of Geographical Information System (GIS) Map for Nuclear Waste Streams

Appunni, Sandhya
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: Artigo de Revista Científica Formato: application/pdf
Português
Relevância na Pesquisa
67.34392%
A nuclear waste stream is the complete flow of waste material from origin to treatment facility to final disposal. The objective of this study was to design and develop a Geographic Information Systems (GIS) module using Google Application Programming Interface (API) for better visualization of nuclear waste streams that will identify and display various nuclear waste stream parameters. A proper display of parameters would enable managers at Department of Energy waste sites to visualize information for proper planning of waste transport. The study also developed an algorithm using quadratic Bézier curve to make the map more understandable and usable. Microsoft Visual Studio 2012 and Microsoft SQL Server 2012 were used for the implementation of the project. The study has shown that the combination of several technologies can successfully provide dynamic mapping functionality. Future work should explore various Google Maps API functionalities to further enhance the visualization of nuclear waste streams.

Fuzzy Modeling and Control Based Virtual Machine Resource Management

Wang, Lixi
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: Artigo de Revista Científica Formato: application/pdf
Português
Relevância na Pesquisa
67.063467%
Virtual machines (VMs) are powerful platforms for building agile datacenters and emerging cloud systems. However, resource management for a VM-based system is still a challenging task. First, the complexity of application workloads as well as the interference among competing workloads makes it difficult to understand their VMs’ resource demands for meeting their Quality of Service (QoS) targets; Second, the dynamics in the applications and system makes it also difficult to maintain the desired QoS target while the environment changes; Third, the transparency of virtualization presents a hurdle for guest-layer application and host-layer VM scheduler to cooperate and improve application QoS and system efficiency. This dissertation proposes to address the above challenges through fuzzy modeling and control theory based VM resource management. First, a fuzzy-logic-based nonlinear modeling approach is proposed to accurately capture a VM’s complex demands of multiple types of resources automatically online based on the observed workload and resource usages. Second, to enable fast adaption for resource management, the fuzzy modeling approach is integrated with a predictive-control-based controller to form a new Fuzzy Modeling Predictive Control (FMPC) approach which can quickly track the applications’ QoS targets and optimize the resource allocations under dynamic changes in the system. Finally...

On the Design of Real-Time Systems on Multi-Core Platforms under Uncertainty

WANG, TIANYI
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: Artigo de Revista Científica Formato: application/pdf
Português
Relevância na Pesquisa
67.631313%
Real-time systems are computing systems that demand the assurance of not only the logical correctness of computational results but also the timing of these results. To ensure timing constraints, traditional real-time system designs usually adopt a worst-case based deterministic approach. However, such an approach is becoming out of sync with the continuous evolution of IC technology and increased complexity of real-time applications. As IC technology continues to evolve into the deep sub-micron domain, process variation causes processor performance to vary from die to die, chip to chip, and even core to core. The extensive resource sharing on multi-core platforms also significantly increases the uncertainty when executing real-time tasks. The traditional approach can only lead to extremely pessimistic, and thus, unpractical design of real-time systems. Our research seeks to address the uncertainty problem when designing real-time systems on multi-core platforms. We first attacked the uncertainty problem caused by process variation. We proposed a virtualization framework and developed techniques to optimize the system's performance under process variation. We further studied the problem on peak temperature minimization for real-time applications on multi-core platforms. Three heuristics were developed to reduce the peak temperature for real-time systems. Next...

Exploring Hidden Coherent Feature Groups and Temporal Semantics for Multimedia Big Data Analysis

Yang, Yimin
Fonte: FIU Digital Commons Publicador: FIU Digital Commons
Tipo: text Formato: application/pdf
Português
Relevância na Pesquisa
67.102246%
Thanks to the advanced technologies and social networks that allow the data to be widely shared among the Internet, there is an explosion of pervasive multimedia data, generating high demands of multimedia services and applications in various areas for people to easily access and manage multimedia data. Towards such demands, multimedia big data analysis has become an emerging hot topic in both industry and academia, which ranges from basic infrastructure, management, search, and mining to security, privacy, and applications. Within the scope of this dissertation, a multimedia big data analysis framework is proposed for semantic information management and retrieval with a focus on rare event detection in videos. The proposed framework is able to explore hidden semantic feature groups in multimedia data and incorporate temporal semantics, especially for video event detection. First, a hierarchical semantic data representation is presented to alleviate the semantic gap issue, and the Hidden Coherent Feature Group (HCFG) analysis method is proposed to capture the correlation between features and separate the original feature set into semantic groups, seamlessly integrating multimedia data in multiple modalities. Next, an Importance Factor based Temporal Multiple Correspondence Analysis (i.e....