Página 1 dos resultados de 1378 itens digitais encontrados em 0.020 segundos

An insulator element 3′ to the CFTR gene binds CTCF and reveals an active chromatin hub in primary cells

Blackledge, Neil P.; Ott, Christopher J.; Gillen, Austin E.; Harris, Ann
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.27392%
Regulation of expression of the CFTR gene is poorly understood. Elements within the basal promoter of the gene do not fully explain CFTR expression patterns, suggesting that cis-regulatory elements are located elsewhere, either within the locus or in adjacent chromatin. We previously mapped DNase I hypersensitive sites (DHS) in 400 kb spanning the CFTR locus including a cluster of sites close to the 3′-end of the gene. Here we focus on a DHS at +6.8 kb from the CFTR translation end-point to evaluate its potential role in regulating expression of the gene. This DHS, which encompasses a consensus CTCF-binding site, was evident in primary human epididymis cells that express abundant CFTR mRNA. We show by DNase I footprinting and electophoretic mobility shift assays that the cis-regulatory element within this DHS binds CTCF in vitro. We further demonstrate that the element functions as an enhancer blocker in a well-established in vivo assay, and by using chromatin immunoprecipitation that it recruits CTCF in vivo. Moreover, we reveal that in primary epididymis cells, the +6.8 kb DHS interacts closely with the CFTR promoter, suggesting that the CFTR locus exists in a looped conformation, characteristic of an active chromatin hub.

Establishment of Histone Modifications after Chromatin Assembly

Scharf, Annette N. D.; Barth, Teresa K.; Imhof, Axel
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.11712%
Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin ‘matures’ and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine (15N4) that is 4 Da heavier than the naturally occurring 14N4 isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones.

DNA sequence encoded repression of rRNA gene transcription in chromatin

Felle, Max; Exler, Josef H.; Merkl, Rainer; Dachauer, Karoline; Brehm, Alexander; Grummt, Ingrid; Längst, Gernot
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.43019%
Eukaryotic genomes are packaged into nucleosomes that occlude DNA from interacting with most DNA-binding proteins. Nucleosome positioning and chromatin organization is critical for gene regulation. We have investigated the mechanism by which nucleosomes are positioned at the promoters of active and silent rRNA genes (rDNA). The reconstitution of nucleosomes on rDNA results in sequence-dependent nucleosome positioning at the rDNA promoter that mimics the chromatin structure of silent rRNA genes in vivo, suggesting that active mechanisms are required to reorganize chromatin structure upon gene activation. Nucleosomes are excluded from positions observed at active rRNA genes, resulting in transcriptional repression on chromatin. We suggest that the repressed state is the default chromatin organization of the rDNA and gene activation requires ATP-dependent chromatin remodelling activities that move the promoter-bound nucleosome about 22-bp upstream. We suggest that nucleosome remodelling precedes promoter-dependent transcriptional activation as specific inhibition of ATP-dependent chromatin remodelling suppresses the initiation of RNA Polymerase I transcription in vitro. Once initiated, RNA Polymerase I is capable of elongating through reconstituted chromatin without apparent displacement of the nucleosomes. The results reveal the functional cooperation of DNA sequence and chromatin remodelling complexes in nucleosome positioning and in establishing the epigenetic active or silent state of rRNA genes.

Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast

Ganapathi, Mythily; Palumbo, Michael J.; Ansari, Suraiya A.; He, Qiye; Tsui, Kyle; Nislow, Corey; Morse, Randall H.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.16789%
The packaging of eukaryotic DNA into chromatin has profound consequences for gene regulation, as well as for other DNA transactions such as recombination, replication and repair. Understanding how this packaging is determined is consequently a pressing problem in molecular genetics. DNA sequence, chromatin remodelers and transcription factors affect chromatin structure, but the scope of these influences on genome-wide nucleosome occupancy patterns remains uncertain. Here, we use high resolution tiling arrays to examine the contributions of two general regulatory factors, Abf1 and Rap1, to nucleosome occupancy in Saccharomyces cerevisiae. These factors have each been shown to bind to a few hundred promoters, but we find here that thousands of loci show localized regions of altered nucleosome occupancy within 1 h of loss of Abf1 or Rap1 binding, and that altered chromatin structure can occur via binding sites having a wide range of affinities. These results indicate that DNA-binding transcription factors affect chromatin structure, and probably dynamics, throughout the genome to a much greater extent than previously appreciated.

Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells

Angrisano, T.; Sacchetti, S.; Natale, F.; Cerrato, A.; Pero, R.; Keller, S.; Peluso, S.; Perillo, B.; Avvedimento, V. E.; Fusco, A.; Bruni, C. B.; Lembo, F.; Santoro, M.; Chiariotti, L.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
99.15743%
Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci.

Genome-wide chromatin occupancy analysis reveals a role for ASH2 in transcriptional pausing

Pérez-Lluch, Sílvia; Blanco, Enrique; Carbonell, Albert; Raha, Debasish; Snyder, Michael; Serras, Florenci; Corominas, Montserrat
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.12621%
An important mechanism for gene regulation involves chromatin changes via histone modification. One such modification is histone H3 lysine 4 trimethylation (H3K4me3), which requires histone methyltranferase complexes (HMT) containing the trithorax-group (trxG) protein ASH2. Mutations in ash2 cause a variety of pattern formation defects in the Drosophila wing. We have identified genome-wide binding of ASH2 in wing imaginal discs using chromatin immunoprecipitation combined with sequencing (ChIP-Seq). Our results show that genes with functions in development and transcriptional regulation are activated by ASH2 via H3K4 trimethylation in nearby nucleosomes. We have characterized the occupancy of phosphorylated forms of RNA Polymerase II and histone marks associated with activation and repression of transcription. ASH2 occupancy correlates with phosphorylated forms of RNA Polymerase II and histone activating marks in expressed genes. Additionally, RNA Polymerase II phosphorylation on serine 5 and H3K4me3 are reduced in ash2 mutants in comparison to wild-type flies. Finally, we have identified specific motifs associated with ASH2 binding in genes that are differentially expressed in ash2 mutants. Our data suggest that recruitment of the ASH2-containing HMT complexes is context specific and points to a function of ASH2 and H3K4me3 in transcriptional pausing control.

Signal-induced Brd4 release from chromatin is essential for its role transition from chromatin targeting to transcriptional regulation

Ai, Nanping; Hu, Xiangming; Ding, Feng; Yu, Bingfei; Wang, Huiping; Lu, Xiaodong; Zhang, Kai; Li, Yannan; Han, Aidong; Lin, Wen; Liu, Runzhong; Chen, Ruichuan
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.1221%
Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb...

Selective requirement of H2B N-Terminal tail for p14ARF-induced chromatin silencing

Choi, Jongkyu; Kim, Hyunjung; Kim, Kyunghwan; Lee, Bomi; Lu, Wange; An, Woojin
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.14741%
The N-terminal tail of histone H2B is believed to be involved in gene silencing, but how it exerts its function remains elusive. Here, we report the biochemical characterization of p14ARF tumor suppressor as a transcriptional repressor that selectively recognizes the unacetylated H2B tails on nucleosomes. The p14ARF–H2B tail interaction is functional, as the antagonistic effect of p14ARF on chromatin transcription is lost upon deletion or acetylation of H2B tails. Gene expression profiling and chromatin immunoprecipitation studies emphasize the significance of H2B deacetylation and p14ARF recruitment in establishing a repressive environment over the cell cycle regulatory genes. Moreover, HDAC1-mediated H2B deacetylation, especially at K20, constitutes an essential step in tethering p14ARF near target promoters. Our results thus reveal a hitherto unknown role of p14ARF in the regulation of chromatin transcription, as well as molecular mechanisms governing the repressive action of p14ARF.

XNP/dATRX interacts with DREF in the chromatin to regulate gene expression

Valadez-Graham, Viviana; Yoshioka, Yasuhide; Velazquez, Oscar; Kawamori, Akihito; Vázquez, Martha; Neumann, Adina; Yamaguchi, Masamitsu; Zurita, Mario
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.36547%
The ATRX gene encodes a chromatin remodeling protein that has two important domains, a helicase/ATPase domain and a domain composed of two zinc fingers called the ADD domain. The ADD domain binds to histone tails and has been proposed to mediate their binding to chromatin. The putative ATRX homolog in Drosophila (XNP/dATRX) has a conserved helicase/ATPase domain but lacks the ADD domain. In this study, we propose that XNP/dATRX interacts with other proteins with chromatin-binding domains to recognize specific regions of chromatin to regulate gene expression. We report a novel functional interaction between XNP/dATRX and the cell proliferation factor DREF in the expression of pannier (pnr). DREF binds to DNA-replication elements (DRE) at the pnr promoter to modulate pnr expression. XNP/dATRX interacts with DREF, and the contact between the two factors occurs at the DRE sites, resulting in transcriptional repression of pnr. The occupancy of XNP/dATRX at the DRE, depends on DNA binding of DREF at this site. Interestingly, XNP/dATRX regulates some, but not all of the genes modulated by DREF, suggesting a promoter-specific role of XNP/dATRX in gene regulation. This work establishes that XNP/dATRX directly contacts the transcriptional activator DREF in the chromatin to regulate gene expression.

The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit

Zraly, Claudia B.; Dingwall, Andrew K.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.41003%
Nucleosome remodeling catalyzed by the ATP-dependent SWI/SNF complex is essential for regulated gene expression. Transcriptome profiling studies in flies and mammals identified cell cycle and hormone responsive genes as important targets of remodeling complex activities. Loss of chromatin remodeling function has been linked to developmental abnormalities and aggressive cancers. The Drosophila Brahma (Brm) SWI/SNF complex assists in reprogramming and coordinating gene expression in response to ecdysone hormone signaling at critical points during development. We used RNAi knockdown in cultured cells and transgenic flies, and conditional mutant alleles to identify unique and important functions of two conserved Brm complex core subunits, SNR1/SNF5 and BRM/SNF2-SWI2, on target gene regulation. Unexpectedly, we found that incorporation of a loss of function SNR1 subunit led to alterations in RNA polymerase elongation, pre-mRNA splicing regulation and chromatin accessibility of ecdysone hormone regulated genes, revealing that SNR1 functions to restrict BRM-dependent nucleosome remodeling activities downstream of the promoter region. Our results reveal critically important roles of the SNR1/SNF5 subunit and the Brm chromatin remodeling complex in transcription regulation during elongation by RNA Polymerase II and completion of pre-mRNA transcripts that are dependent on hormone signaling in late development.

Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages

Lan, Xun; Witt, Heather; Katsumura, Koichi; Ye, Zhenqing; Wang, Qianben; Bresnick, Emery H.; Farnham, Peggy J.; Jin, Victor X.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.31298%
We have analyzed publicly available K562 Hi-C data, which enable genome-wide unbiased capturing of chromatin interactions, using a Mixture Poisson Regression Model and a power-law decay background to define a highly specific set of interacting genomic regions. We integrated multiple ENCODE Consortium resources with the Hi-C data, using DNase-seq data and ChIP-seq data for 45 transcription factors and 9 histone modifications. We classified 12 different sets (clusters) of interacting loci that can be distinguished by their chromatin modifications and which can be categorized into two types of chromatin linkages. The different clusters of loci display very different relationships with transcription factor-binding sites. As expected, many of the transcription factors show binding patterns specific to clusters composed of interacting loci that encompass promoters or enhancers. However, cluster 9, which is distinguished by marks of open chromatin but not by active enhancer or promoter marks, was not bound by most transcription factors but was highly enriched for three transcription factors (GATA1, GATA2 and c-Jun) and three chromatin modifiers (BRG1, INI1 and SIRT6). To investigate the impact of chromatin organization on gene regulation...

Rhythmic binding of Topoisomerase I impacts on the transcription of Bmal1 and circadian period

Onishi, Yoshiaki; Kawano, Yasuhiro
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.17707%
The Bmal1 gene is essential for the circadian system, and its promoter has a unique open chromatin structure. We examined the mechanism of topoisomerase I (Top1) to understand the role of the unique chromatin structure in Bmal1 gene regulation. Camptothecin, a Top1 inhibitor, and Top1 small interfering RNA (siRNA) enhanced Baml1 transcription and lengthened its circadian period. Top1 is located at an intermediate region between two ROREs that are critical cis-elements of circadian transcription and the profile of Top1 binding indicated anti-phase circadian oscillation of Bmal1 transcription. Promoter assays showed that the Top1-binding site is required for transcriptional suppression and that it functions cooperatively with the distal RORE, supporting that Bmal1 transcription is upregulated by Top1 inhibition. A DNA fragment between the ROREs, where the Top1-binding site is located, behaved like a right-handed superhelical twist, and modulation of Top1 activity by camptothecin and Top1 siRNA altered the footprint profile, indicating modulation of the chromatin structure. These data indicate that Top1 modulates the chromatin structure of the Bmal1 promoter, regulates Bmal1 transcription and influences the circadian period.

Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.51042%
Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling.

The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state

Hernández-Hernández, J. Manuel; Mallappa, Chandrashekara; Nasipak, Brian T.; Oesterreich, Steffi; Imbalzano, Anthony N.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.39599%
The regulation of skeletal muscle gene expression during myogenesis is mediated by lineage-specific transcription factors in combination with numerous cofactors, many of which modify chromatin structure. However, the involvement of scaffolding proteins that organize chromatin and chromatin-associated regulatory proteins has not extensively been explored in myogenic differentiation. Here, we report that Scaffold attachment factor b1 (Safb1), primarily associated with transcriptional repression, functions as a positive regulator of myogenic differentiation. Knockdown of Safb1 inhibited skeletal muscle marker gene expression and differentiation in cultured C2C12 myoblasts. In contrast, over-expression resulted in the premature expression of critical muscle structural proteins and formation of enlarged thickened myotubes. Safb1 co-immunoprecipitated with MyoD and was co-localized on myogenic promoters. Upon Safb1 knockdown, the repressive H3K27me3 histone mark and binding of the Polycomb histone methyltransferase Ezh2 persisted at differentiation-dependent gene promoters. In contrast, the appearance of histone marks and regulators associated with myogenic gene activation, such as myogenin and the SWI/SNF chromatin remodelling enzyme ATPase...

A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq

Yang, Jun; Mitra, Abhishek; Dojer, Norbert; Fu, Shuhua; Rowicka, Maga; Brasier, Allan R.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.14782%
Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to putative gene regulation are integrated to derive an NF-κB gene network. A de novo motif enrichment analysis uncovers secondary TFBSs (AP1, SP1) at characteristic distances from NF-κB/RelA TFBSs. Comparison with experimental ENCODE ChIP-Seq data indicates that experimental TFBSs highly correlate with predicted sites. We observe that RelA-SP1-enriched promoters have distinct expression profiles from that of RelA-AP1 and are enriched in introns, CpG islands and DNase accessible sites. Sixteen novel NF-κB/RelA-regulated genes and TFBSs were experimentally validated, including TANK, a negative feedback gene whose expression is NF-κB/RelA dependent and requires a functional interaction with the AP1 TFBSs. Our probabilistic method yields more accurate NF-κB/RelA-regulated networks than a traditional, distance-based approach, confirmed by both analysis of gene expression and increased informativity of Genome Ontology annotations. Our analysis provides new insights into how co-occurring TFBSs and local chromatin context orchestrate activation of NF-κB/RelA sub-pathways differing in biological function and temporal expression patterns.

Heavy transcription of yeast genes correlates with differential loss of histone H2B relative to H4 and queued RNA polymerases

Cole, Hope A.; Ocampo, Josefina; Iben, James R.; Chereji, Răzvan V.; Clark, David J.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.28132%
Eukaryotic chromatin is composed of nucleosomes, which contain nearly two coils of DNA wrapped around a central histone octamer. The octamer contains an H3-H4 tetramer and two H2A-H2B dimers. Gene activation is associated with chromatin disruption: a wider nucleosome-depleted region (NDR) at the promoter and reduced nucleosome occupancy over the coding region. Here, we examine the nature of disrupted chromatin after induction, using MNase-seq to map nucleosomes and subnucleosomes, and a refined high-resolution ChIP-seq method to map H4, H2B and RNA polymerase II (Pol II) genome-wide. Over coding regions, induced genes show a differential loss of H2B relative to H4, which correlates with Pol II density and the appearance of subnucleosomes. After induction, Pol II is surprisingly low at the promoter, but accumulates on the gene and downstream of the termination site, implying that dissociation is very slow. Thus, induction-dependent chromatin disruption reflects both eviction of H2A-H2B dimers and the presence of queued Pol II elongation complexes. We propose that slow Pol II dissociation after transcription is a major factor in chromatin disruption and that it may be of critical importance in gene regulation.

The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells

Norton, Luke; Chen, Xi; Fourcaudot, Marcel; Acharya, Nikhil K.; DeFronzo, Ralph A.; Heikkinen, Sami
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
99.24526%
In the liver Wnt-signaling contributes to the metabolic fate of hepatocytes, but the precise role of the TCF7L2 in this process is unknown. We employed a temporal RNA-Seq approach to examine gene expression 3–96 h following Tcf7l2 silencing in rat hepatoma cells, and combined this with ChIP-Seq to investigate mechanisms of target gene regulation by TCF7L2. Silencing Tcf7l2 led to a time-dependent appearance of 406 differentially expressed genes (DEGs), including key regulators of cellular growth and differentiation, and amino acid, lipid and glucose metabolism. Direct regulation of 149 DEGs was suggested by strong proximal TCF7L2 binding (peak proximity score > 10) and early mRNA expression changes (≤18 h). Indirect gene regulation by TCF7L2 likely occurred via alternate transcription factors, including Hnf4a, Foxo1, Cited2, Myc and Lef1, which were differentially expressed following Tcf7l2 knock-down. Tcf7l2-silencing enhanced the expression and chromatin occupancy of HNF4α, and co-siRNA experiments revealed that HNF4α was required for the regulation of a subset of metabolic genes by TCF7L2, particularly those involved in lipid and amino-acid metabolism. Our findings suggest TCF7L2 is an important regulator of the hepatic phenotype...

The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states

Ying, Yue; Yang, Xingyu; Zhao, Kai; Mao, Jifang; Kuang, Ying; Wang, Zhugang; Sun, Ruilin; Fei, Jian
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.23267%
The Krüppel-associated box (KRAB) domain is a transcription repression module from the largest family of transcriptional regulators encoded by higher vertebrates. We developed a drug-controllable regulation system based on an artificial KRAB-containing repressor (tTS) that targets the endogenous Hprt gene to explore the regulatory mechanism and molecular basis of KRAB-containing regulators within the context of an endogenous gene in vivo. We show that KRAB can mediate irreversible and reversible regulation of endogenous genes in mouse that is dependent on embryonic developmental stage. KRAB-induced stable DNA methylation within the KRAB binding region during the early embryonic stage, resulting in irreversible gene repression. In later stages, KRAB mainly induced de-acetylation and methylation of histone, resulting in reversible gene repression. Thus, we have characterized the KRAB-mediated regulation system within the context of an endogenous gene and multiple spatiotemporal ranges, thereby providing a basis for identifying the function of KRAB-containing regulators and aiding development of novel KRAB-based gene regulation tools in vivo.

Linker histone partial phosphorylation: effects on secondary structure and chromatin condensation

Lopez, Rita; Sarg, Bettina; Lindner, Herbert; Bartolomé, Salvador; Ponte, Inma; Suau, Pedro; Roque, Alicia
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.27077%
Linker histones are involved in chromatin higher-order structure and gene regulation. We have successfully achieved partial phosphorylation of linker histones in chicken erythrocyte soluble chromatin with CDK2, as indicated by HPCE, MALDI-TOF and Tandem MS. We have studied the effects of linker histone partial phosphorylation on secondary structure and chromatin condensation. Infrared spectroscopy analysis showed a gradual increase of β-structure in the phosphorylated samples, concomitant to a decrease in α-helix/turns, with increasing linker histone phosphorylation. This conformational change could act as the first step in the phosphorylation-induced effects on chromatin condensation. A decrease of the sedimentation rate through sucrose gradients of the phosphorylated samples was observed, indicating a global relaxation of the 30-nm fiber following linker histone phosphorylation. Analysis of specific genes, combining nuclease digestion and qPCR, showed that phosphorylated samples were more accessible than unphosphorylated samples, suggesting local chromatin relaxation. Chromatin aggregation was induced by MgCl2 and analyzed by dynamic light scattering (DLS). Phosphorylated chromatin had lower percentages in volume of aggregated molecules and the aggregates had smaller hydrodynamic diameter than unphosphorylated chromatin...

Distal chromatin structure influences local nucleosome positions and gene expression

Jansen, An; van der Zande, Elisa; Meert, Wim; Fink, Gerald R.; Verstrepen, Kevin J.
Fonte: Oxford University Press Publicador: Oxford University Press
Tipo: Artigo de Revista Científica
Português
Relevância na Pesquisa
89.14916%
The positions of nucleosomes across the genome influence several cellular processes, including gene transcription. However, our understanding of the factors dictating where nucleosomes are located and how this affects gene regulation is still limited. Here, we perform an extensive in vivo study to investigate the influence of the neighboring chromatin structure on local nucleosome positioning and gene expression. Using truncated versions of the Saccharomyces cerevisiae URA3 gene, we show that nucleosome positions in the URA3 promoter are at least partly determined by the local DNA sequence, with so-called ‘antinucleosomal elements’ like poly(dA:dT) tracts being key determinants of nucleosome positions. In addition, we show that changes in the nucleosome positions in the URA3 promoter strongly affect the promoter activity. Most interestingly, in addition to demonstrating the effect of the local DNA sequence, our study provides novel in vivo evidence that nucleosome positions are also affected by the position of neighboring nucleosomes. Nucleosome structure may therefore be an important selective force for conservation of gene order on a chromosome, because relocating a gene to another genomic position (where the positions of neighboring nucleosomes are different from the original locus) can have dramatic consequences for the gene's nucleosome structure and thus its expression.